『I

EXPANSION JOINTS

TRANSFLEX
REINFORCED ELASTOMERIC JOINT SYSTEM

Introduction

Market Leaders In Expansion Joint Technology.

The system consists of moulded steel reinforced rubber modules for smooth transit between two separate surfaces on the same plane, absorbing expansion and contraction, translation and rotation movements.

The Transflex range is supplied in modules of a given length and is anchored to both sides of the structural joint. All Transflex models offer the possibility to make special pieces for kerbs, walkways, correction of skewed joint and other contours. In this way, the continuity of the seal is ensured.

The rubber covers the steel reinforcement that entails a double benefit: the rubber protects the metallic part from corrosion and the steel reinforces the device structure.

USL Transflex is marketed by Tremco Construction Products Group in Asia Pacific.

THE PRODUCT IN BRIEF

USL Transflex bridge joints comprise of steel angles and a steel bridging plate system encased in a flexible elastomer.

They are supplied in module lengths designed to be bolted to the structural concrete on either side of the expansion gap.

A range of models are available to accommodate movement up to 330 mm , providing a substantially waterproof joint and a smooth running surface.

- Movement accommodation up to 330 mm
- Corrosive resistant elastomer casing
- Accommodates skew movement
- Factory vulcanised kerb and skew kerb units to special order
- Membrane system included for maximum waterproofing

Principal applications

- Highway bridge decks
- Service Ramps
- Multi-storey car parks

Design features

Transflex bridge joint 150, 200, 250 and 300

Bolt/stud
hole

Transflex bridge joint 400, 650, 900 and 1300

Bolt/stud
hole

Typical cross section through carriageway joint

USL TRANSLFEX BRIDGE JOINT MODELS

Movement accommodation	Module length	Module width B	Module depth A	Stud diameter D	Module weight	Max stud height above shelf M	Bolt torque	Max joint width at mid-deck temp N
38 mm	1750 mm	240 mm	35 mm	12 mm	30 kg	32 mm	38 Nm	35 mm
50 mm	1830 mm	274 mm	40 mm	12 mm	48 kg	32 mm	38 Nm	51 mm
65 mm	1830 mm	356 mm	46 mm	16 mm	68 kg	40 mm	95 Nm	67 mm
76 mm	1830 mm	432 mm	52 mm	20 mm	88 kg	42 mm	175 Nm	83 mm
102 mm	1830 mm	590 mm	54 mm	20 mm	150 kg	42 mm	175 Nm	102 mm
165 mm	1830 mm	724 mm	75 mm	24 mm	272 kg	50 mm	190 Nm	121 mm
230 mm	1830 mm	890 mm	93 mm	24 mm	375 kg	60 mm	275 Nm	158 mm
330 mm	1220 mm	1204 mm	127 mm	30 mm	451 kg	70 mm	300 Nm	216 mm

[^0]

Max joint width 0	Recess depth R	Transition strip width W	Bolt hole centres C	Bold hole centre along unit CL	End of unit to first bolt hole CE	Models
54mm	41 mm	100 mm	190 mm	250 mm	125 mm	
76 mm	46mm	100mm	220 mm	305mm	152mm	
98mm	52 mm	100 mm	279 mm	305 mm	152 mm	
121 mm	58mm	100 mm	342 mm	305 mm	152 mm	
152 mm	62mm	100 mm	498mm	305 mm	152 mm	
203 mm	81 mm	125 mm	618mm	305 mm	152 mm	
273 mm	99mm	150mm	787 mm	305mm	152mm	
381 mm	133mm	175 mm	1080mm	305 mm	152 mm	

Technical specifications

Property	Standard	Value
Hardness	ASTM D2240	$62^{\circ} \pm 5^{\circ}$ Shore 'A'
Tensile strength (min)	ASTM D412	$130 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~min}$
Elongation at break (min)	ASTM D412	400% min
Low temperature brittleness	ASTM D746	$-30^{\circ} \mathrm{C}$ (Not brittle)
Ozone resistance (After 48hrs. At $38^{\circ} \mathrm{C}$ exposure to 50 PPHM in air sample under 20\% strain) ASTM D1149 No cracks Resistance to permanent set (24hrs. At $\left.70^{\circ} \mathrm{C}\right)$ ASTM D395 Oil resistance ASTM D471 35% max Requirements $+18 \%$ Steel Steel components manufactured to: DIN 17-100 Type ST 37-2	ASTM Type A36	

Manufactured to DIN 37-2

	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{6 5 0}$	$\mathbf{9 0 0}$	$\mathbf{1 3 0 0}$
a	34 mm	34 mm	45 mm	60 mm	60 mm	65 mm	72 mm	70 mm
b	27 mm	27 mm	35 mm	50 mm	50 mm	55 mm	51 mm	60 mm
d	14 mm	14 mm	17 mm	21 mm	21 mm	25 mm	25 mm	31 mm
t	3.0 mm	3.0 mm	3.7 mm	4.0 mm	4.0 mm	4.5 mm	6.0 mm	6.0 mm

DESCRIPTION

The USL Transflex bridge joint system comprises of 8 No. standard models designed to accommodate movement up to 330 mm by shear deformation of the elastomer between the steel components.

Each model incorporates steel angles designed to be bolted to the structural deck and a steel bridging plate system which spans the open joint gap.

The elastomer case is highly resistant to oils, solvent spillage and the trafficked surface includes an anti-skid pattern for safety having a rubber to rubber coefficient of static friction of 0.69. Each model is specifically designed to accommodate horizontal and skew movement and will also accommodate vertical movement due to rotation of up to 6 mm .

Special steel clipped washers are provided with each unit designed specifically for the Transflex joint. Stainless steel washers to the same high specification can be supplied to special order.

It is important that the correct washer is used in each case.

When additional waterproofing is specified a continuous length of Uniflex membrane should be bonded to the levelling bed with adhesive over the full width of the Transflex joint unit. Drain outlets will be incorporated.

Rebond profiles

During installation it is sometimes necessary, for practical reasons, to cut a Transflex unit on-site. In order to maintain the integrity of the joint between each module, male and female rebond profiles are available for each unit to reinstate the end configuration as required.

The profiles are available in lengths for cutting on-site together with an adhesive.

Factory Vulcanised junctions Special factory vulcanised junctions and kerb units are available to accommodate changes in level at kerbs and central reservations, in addilition, standard units are capable of being modified on-site to accommodate some level changes.

TECHNICAL DATA

Performance

Transflex bridge joints are designed to accept both horizontal and vertical loads due to traffic in accordance with the UK Highways Agency Technical Memorandum BD 33/94.

The graphs illustrated opposite are an indication of the horizontal load required to deflect each Transflex joint.

Kerb upstand units

Examples of a factory vulcanised kerb unit for models 150, 200, 250 \& 300

Optional - male or female tongue and groove

Examples of a factory vulcanised skew kerb upstand

Optional - male or female tongue and groove
Examples of a factory vulcanised kerb unit for models 400, 650, 900 \& 1300

DESCRIPTION

As part of a bridge joint installation scheme factory vulcanised junctions are available to accommodate the change in level at kerbs, footways and at the central reservation subject to special order and design detail.

The junctions available include kerb units, skew kerb units and change of level units, each factory vulcanised to maintain high quality standards and integrity of the seal.

KERB UNITS

Change of level junctions are available factory vulcanised to meet the requirements for changing level from road deck to footway.

The junctions are fabricated such that the change in level from road to footway takes place behind the kerb line. Leg lengths, the included angles and the male or female end configurations should be specified at the time of order.

TECHNICAL DATA

Whilst factory vulcanised change of level junctions should be used as far as possible it may be necessary to modify standard units on-site to accommodate changes of level from road to footway.

This is achieved by cutting and notching the steel bridging system and steel angles and bending the units through 30°. The point of change of level from road to footway taking place behind the kerb line. The void in the kerb line being protected with galvanised steel cover plate.

TEMPERATURE ADJUSTMENT GUIDE

It will often be necessary to pre-compress or pre-extend the Transflex joint to pre-set the joint unit to suit the relative position of the structural expansion joint in the bridge deck.

At the time of installation therefore knowing the mean deck temperature range and the movement to be accommodated, the amount of pre-compression or preextension can be taken off a graph prepared in the manner of the example illustrated.

NB.

1. Example based on model 200 (274mm wide)
2. The example assumes a total design movement accommodation requirement of + and -25 mm from the mid point position.
3. The installation temperature requires that the joint be compressed to 254 mm overall width - prior to installation.
4. Hence the new bolt hold centres " C " to be drilled in the structural concrete will be 199 mm instead of 219 mm
5. Maximum movement of joint + and - 25 mm .
6. Actual movement required + and -25mm

Key:
a. Maximum compression $274-25=249 \mathrm{~mm}$
b. Compressed width for installation 254mm
c. Actual module width 274 mm
d. Maximum extension
$274+25=299 \mathrm{~mm}$
Site installation - for concrete decks

A flat and level monolithic haunch or recess should be formed in the structural deck to accommodate the Transflex joint and the transition strips.

At the design stage care should be taken to locate the reinforcement avoiding the position of the bridge joint anchor studs.

In the interest of achieving a smooth traffic ride over the joint, the wearing course should be machine laid continuously over the structural joint and subsequently removed just prior to installing the bridge joint.

The removal of the surfacing over the joint in the deck is facilitated by the location of the plywood bond breaker of a width just under the combined width of the joint and the transition strips prior to the surfacing being laid. At the time of installation dependent upon mean deck temperature it may be necessary to pre-compress or pre-extend the Transflex joint unit to suit the relative position of the structural expansion joint in the bridge deck.

The installation width of the joint may be determined using graphical means illustrated in the example under the heading "Temperature Adjustment Guide".

Once the Transflex module installation width and the new bolt hole centres have been determined the joint module can be adjusted in width accordingly.

CONTACT US
www.tremcocpg-asiapacific.com

[^0]: Note: Add 3mm to the recess depth 'R' when using the Uniflex secondary membrane.

